
Digital Object Identifier (DOI) 10.1007/s100529900183
Eur. Phys. J. C 11, 507–527 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Monte Carlo simulation of SU(2) Yang-Mills theory
with light gluinos
The DESY-Münster Collaboration

I. Campos1, R. Kirchner1, I. Montvay1, J. Westphalen1, A. Feo2, S. Luckmann2, G. Münster2, K. Spanderen2

1 Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany
2 Institut für Theoretische Physik I, Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany

Received: 15 March 1999 / Published online: 22 October 1999

Abstract. In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos
the low energy features of the dynamics as confinement and bound state mass spectrum are investigated.
The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step
multi-bosonic dynamical fermion algorithm is discussed.

1 Introduction

Supersymmetry seems to be a necessary ingredient of a
quantum theory of gravity. It is generally assumed that the
scale where supersymmetry becomes manifest is near to
the presently explored electroweak scale and that the su-
persymmetry breaking is spontaneous. An attractive pos-
sibility for spontaneous supersymmetry breaking is to ex-
ploit non-perturbative mechanisms in supersymmetric
gauge theories. Therefore the non-perturbative study of
supersymmetric gauge theories is highly interesting [1]. In
recent years there has been great progress in this field,
in particular following the seminal papers of Seiberg and
Witten [2].

The simplest supersymmetric gauge theories are the
N = 1 supersymmetric Yang-Mills (SYM) theories. Be-
sides the gauge fields they contain massless Majorana
fermions in the adjoint representation, which are called
gauginos in general. In the context of strong interactions
one can call the gauge fields gluons and the gauginos
gluinos. In the simple case of a gauge group SU(Nc) the
adjoint representation is (N2

c−1)-dimensional, hence there
are (N2

c − 1) gluons and the same number of gluinos.
The basic assumption about the non-perturbative dy-

namics of SYM theories is that there is confinement and
spontaneous chiral symmetry breaking, similar to QCD.
The confinement is realized by colourless bound states.
Their mass spectrum is supposed to show a non-vanishing
lower bound - the mass gap. Since external colour sources
in the fundamental representation cannot be screened,
the asymptotics of the static potential is characterized by
a non-vanishing string tension. The expected pattern of
spontaneous chiral symmetry breaking in SYM theories is
quite peculiar: considering for definiteness the gauge group
SU(Nc), the expected symmetry breaking is Z2Nc

→ Z2.
For this we have recently found a first numerical evidence
in a Monte Carlo simulation [3]. These general features of

the low energy dynamics can be summarized in terms of
low energy effective actions [4,5].

The supersymmetric point in the parameter space cor-
responds to vanishing gluino mass (mg̃ = 0). For non-zero
gluino mass the supersymmetry is softly broken and the
physical quantities like masses, string tension etc. are sup-
posed to be analytic functions of mg̃. The linear terms of
a Taylor expansion in mg̃ are often determined by the
symmetries of the low energy effective actions [6].

The lattice regularization offers a unique possibility to
confront the expected low energy dynamical features of
supersymmetric gauge theories with numerical simulation
results (for a recent review see [7].) On the lattice it is
natural to extend the investigations to a general value of
the gluino mass. In fact, to study exactly zero gluino mass
is usually more difficult than the massive case and often
an extrapolation to the massless point is necessary. The
main difficulty in the numerical simulations is the inclu-
sion of light dynamical gluinos. Although one can gain
some insight also by studies of the quenched theory [8,9],
the supersymmetry requires dynamical light gluinos.

In the present paper we report on a first large scale
numerical investigation of SU(2) SYM theory with light
gluinos. Although some preliminary results have already
been published previously on different occasions [10–13]
and the question of the discrete chiral symmetry break-
ing has been dealt with in a recent letter [3], this is the
first detailed presentation of the obtained results. The nu-
merical Monte Carlo simulations presented here have been
performed on the CRAY-T3E computers at John von Neu-
mann Institute for Computing (NIC), Jülich.

1.1 Lattice formulation

For the lattice formulation we take the Wilson action, both
for the gluon and gluino, as suggested some time ago by
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Curci and Veneziano [14]. The effective gauge field action
is

SCV = β
∑
pl

(
1− 1

Nc
Re TrUpl

)
− 1

2
log detQ[U ] . (1)

For the gauge group SU(Nc), the bare gauge coupling is
given by β ≡ 2Nc/g

2. The fermion matrix for the gluino
Q is defined by

Qyv,xu ≡ Qyv,xu[U ]

≡ δyxδvu −K
4∑

µ=1

[δy,x+µ̂(1 + γµ)Vvu,xµ

+δy+µ̂,x(1− γµ)V T
vu,yµ

]
. (2)

K is the hopping parameter and the matrix for the gauge-
field link in the adjoint representation is defined as

Vrs,xµ ≡ Vrs,xµ[U ] ≡ 2Tr(U†
xµTrUxµTs) = V ∗

rs,xµ

= V −1T
rs,xµ . (3)

The generators Tr ≡ 1
2λr satisfy the usual normalization

Tr (λrλs) = 1
2δrs. In case of SU(2) we have Tr ≡ 1

2τr with
the isospin Pauli-matrices τr.

The fermion matrix for the gluino Q in (2) is not her-
mitean but it satisfies

Q† = γ5Qγ5 . (4)

This relation allows for the definition of the hermitean
fermion matrix

Q̃ ≡ γ5Q = Q̃† . (5)

The factor 1
2 in front of log detQ in (1) tells that

we effectively have a flavour number Nf = 1
2 of adjoint

fermions. This describes Majorana fermions in the Eu-
clidean path integral. For Majorana fermions the Grass-
mannian variables Ψx and Ψx are not independent but
satisfy, with the charge-conjugation Dirac matrix C,

Ψx = CΨ
T

x , Ψx = ΨT
x C . (6)

(Note that here we use the Dirac-Majorana field Ψx in-
stead of the Weyl-Majorana one λx.) The Grassmannian
path integral for Majorana fermions is defined as∫

[dΨ ]e− 1
2 ΨQΨ =

∫
[dΨ ]e− 1

2 ΨT CQΨ

= Pf(CQ) = Pf(M) . (7)

Here the Pfaffian of the antisymmetric matrix M ≡ CQ is
introduced. The Pfaffian can be defined for a general com-
plex antisymmetric matrix Mαβ = −Mβα with an even
number of dimensions (1 ≤ α, β ≤ 2N) by a Grassmann
integral as

Pf(M) ≡
∫

[dφ]e− 1
2 φαMαβφβ

=
1

N !2N
εα1β1...αN βN

Mα1β1 . . .MαN βN
. (8)

Here, of course, [dφ] ≡ dφ2N . . . dφ1, and ε is the totally
antisymmetric unit tensor. It can be easily shown that

[Pf(M)]2 = detM . (9)

Besides the partition function in (7), expectation val-
ues for Majorana fermions can also be similarly defined
[15,9]. It is easy to show that the hermitean fermion ma-
trix for the gluino Q̃ has doubly degenerate real eigen-
values, therefore detQ = det Q̃ = detM is positive and
Pf(M) is real. In the effective gauge field action (1) the
absolute value of the Pfaffian is taken into account. The
omitted sign can be included by reweighting the expecta-
tion values according to

〈A〉 =
〈A sign Pf(M)〉CV

〈sign Pf(M)〉CV
. (10)

Here 〈. . .〉CV means expectation value with respect to
SCV . This sign problem is very similar to the one in QCD
with an odd number of quark flavours.

The numerical simulations are almost always done on
lattices with toroidal boundary conditions. In the three
spatial directions it is preferable to take periodic bound-
ary conditions both for the gauge field and the gluino.
This implies that in the Hilbert space of states the su-
persymmetry is not broken by the boundary conditions.
In the time direction in most cases we decided to choose
periodic boundary conditions for bosons and antiperiodic
ones for fermions, which is obtained if one writes traces in
terms of Grassmann integrals: the minus sign for fermions
is the usual one associated with closed fermion loops.

1.2 Overview

The aim of this paper is to give a complete presentation
of the methods we used and to report on our numerical
results. We concentrate on the confinement features as
mass spectrum, emergence of supersymmetric multiplets
of bound states and string tension.

The plan of the paper is as follows: in the next sec-
tion the numerical simulation algorithm is described. In
particular, the computation of the necessary Pfaffians is
dealt with in Sect. 2.3. The choice of algorithmic param-
eters and the observed autocorrelations are collected in
Sect. 2.5. The numerical results for the confinement po-
tential and string tension as a function of the bare gluino
mass are summarized in Sect. 3. Section 4 is devoted to the
spectrum of bound states: glueballs, gluino-glueballs and
gluinoballs. This also includes the questions about possible
mixing (Sect. 4.4). The last section contains a summary.
Three appendices are included: appendix A about least
squares optimized polynomials, appendix B on the meth-
ods used for the determination of the smallest eigenval-
ues and eigenvectors of the gluino matrix and appendix C
about the main features of the C++ implementation of
our computer code.
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2 Multi-bosonic algorithm with corrections

The multi-bosonic algorithm for Monte Carlo simulations
of fermions has been proposed by Lüscher [16]. In the orig-
inal version for Nf (Dirac-) fermion flavours one considers
the approximation of the fermion determinant

|det(Q)|Nf =
{
det(Q†Q)

}Nf /2 ' 1
detPn(Q†Q)

, (11)

where the polynomial Pn satisfies

lim
n→∞Pn(x) = x−Nf /2 (12)

in an interval [ε, λ] covering the spectrum of Q†Q. Note
that here the absolute value of the determinant is taken
which leaves out its sign (or phase). In case of Nf = 1

2 ,
which corresponds to a Majorana fermion, this sign prob-
lem will be considered in Sect. 2.3.

For the multi-bosonic representation of the determi-
nant one uses the roots of the polynomial rj , (j = 1, . . . ,
n)

Pn(Q†Q) = Pn(Q̃2) = r0

n∏
j=1

(Q̃2 − rj) . (13)

Assuming that the roots occur in complex conjugate pairs,
one can introduce the equivalent forms

Pn(Q̃2) = r0

n∏
j=1

[(Q̃± µj)2 + ν2
j ]

= r0

n∏
j=1

(Q̃− ρ∗
j )(Q̃− ρj) (14)

where rj ≡ (µj + iνj)2 and ρj ≡ µj + iνj . With the help of
complex scalar (pseudofermion) fields Φjx one can write

n∏
j=1

det[(Q̃− ρ∗
j )(Q̃− ρj)]−1 ∝

∫
[dΦ]

× exp


−

n∑
j=1

∑
xy

Φ+
jy [(Q̃− ρ∗

j )(Q̃− ρj)]yx Φjx


 . (15)

Since for a finite polynomial of order n the approxima-
tion in (12) is not exact, in principle, one has to extrap-
olate the results to n → ∞. In practice this can also be
done by investigating the n-dependence and showing that
the systematic errors introduced by the finiteness of n are
negligible compared to the statistical errors.

The difficulty for small fermion masses in large phys-
ical volumes is that the condition number λ/ε becomes
very large (104 − 106) and very high orders n = O(103)
are needed for a good approximation. This requires large
storage and the autocorrelation becomes bad since it is
proportional to n. One can achieve substantial improve-
ments on both these problems by introducing a two-step
polynomial approximation [15,17]. In this two-step multi-
bosonic scheme (12) is replaced by

lim
n2→∞P (1)

n1
(x)P (2)

n2
(x) = x−Nf /2 , x ∈ [ε, λ] . (16)

The multi-bosonic representation is only used for the first
polynomial P (1)

n1 which provides a first crude approxima-
tion and hence the order n1 can remain relatively low. The
correction factor P (2)

n2 is realized in a stochastic noisy cor-
rection step with a global accept-reject condition during
the updating process (see Sect. 2.1). In order to obtain an
exact algorithm one has to consider in this case the limit
n2 → ∞. For very small fermion (i.e. gluino) masses it
turned out more practicable to fix some large n2 and per-
form another small correction in the evaluation of expec-
tation values by reweighting with a still finer polynomial
(see Sect. 2.2).

2.1 Update correction: global accept-reject

The idea to use a stochastic correction step in the updat-
ing [18], instead of taking very large polynomial orders n,
was proposed in the case ofNf = 2 flavours in [19].Nf = 2
is special because the function to be approximated is just
x−1 and P (2)

n2 (x) can be replaced by the calculation of the
inverse of xP (1)

n1 (x). For general Nf one can take the two-
step approximation scheme introduced in [15].

The two-step multi-bosonic algorithm is described in
detail in [15]. Here we shortly repeat its main steps for
the readers convenience and discuss the experience we ob-
tained with it. The theory of the necessary optimized poly-
nomials is summarized in appendix A following [17].

In the two-step approximation scheme for Nf flavours
of fermions the absolute value of the determinant is rep-
resented as

|det(Q)|Nf ' 1

detP (1)
n1 (Q̃2) detP (2)

n2 (Q̃2)
. (17)

The multi-bosonic updating with n1 scalar pseudofermion
fields is performed by heatbath and overrelaxation sweeps
for the scalar fields and Metropolis sweeps for the gauge
field. After a Metropolis sweep for the gauge field a global
accept-reject step is introduced in order to reach the dis-
tribution of gauge field variables [U ] corresponding to the
right hand side of (17). The idea of the noisy correction is
to generate a random vector η according to the normalized
Gaussian distribution

e−η†P (2)
n2

(Q̃[U ]2)η∫
[dη]e−η†P

(2)
n2 (Q̃[U ]2)η

, (18)

and to accept the change [U ′]← [U ] with probability

min {1, A(η; [U ′]← [U ])} , (19)

where

A(η; [U ′]← [U ]) = exp
{
−η†P (2)

n2
(Q̃[U ′]2)η

−η†P (2)
n2

(Q̃[U ]2)η
}
. (20)

The Gaussian noise vector η can be obtained from η′
distributed according to the simple Gaussian distribution

e−η′†η′∫
[dη′]e−η′†η′ (21)
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by setting it equal to

η = P (2)
n2

(Q̃[U ]2)− 1
2 η′ . (22)

In order to obtain the inverse square root on the right
hand side of (22), we can proceed with polynomial ap-
proximations in two different ways. The first possibility
was proposed in [15] with x ≡ Q̃2 as

P (2)
n2

(x)− 1
2 ' Rn3(x) ' xNf /4Sns [P

(1)
n1

(x)] . (23)

Here

Sns
(P ) ' P 1

2 (24)

is an approximation of the function P
1
2 on the interval P ∈

[λ−Nf /2, ε−Nf /2]. The polynomial approximationsRn3 and
Sns

can be determined by the same general procedure as
P

(1)
n1 and P (2)

n2 . It turns out that these approximations are
“easier” in the sense that for a given order higher preci-
sions can be achieved than, say, for P (1)

n1 .
Another possibility to obtain a suitable approximation

for (22) is to use the second decomposition in (14) and
define

P (1/2)
n2

(Q̃) ≡ √r0
n2∏

j=1

(Q̃− ρj) ,

P (2)
n2

(Q̃2) = P (1/2)
n2

(Q̃)†P (1/2)
n2

(Q̃) . (25)

Using this form, the noise vector η necessary in the noisy
correction step can be generated from the gaussian vector
η′ according to

η = P (1/2)
n2

(Q̃)−1η′ , (26)

where P (1/2)
n2 (Q̃)−1 can be obtained as

P (1/2)
n2

(Q̃)−1 =
P

(1/2)
n2 (Q̃)†

P
(2)
n2 (Q̃2)

' Pn3(Q̃
2)P (1/2)

n2
(Q̃)† . (27)

In the last step Pn3 denotes a polynomial approximation
for the inverse of P (2)

n2 on the interval [ε, λ]. Note that
this last approximation can also be replaced by an itera-
tive inversion of P (2)

n2 (Q̃2). However, tests showed that the
inversion by a least-squares optimized polynomial approx-
imation is much faster because, for a given precision, less
matrix multiplications have to be performed.

In most of our Monte Carlo computations presented in
this paper we used the second form in (26)-(27). The first
form could, however, be used as well. In fact, for very high
orders n2 or on a 32-bit computer the first scheme would
be better from the point of view of rounding errors. The
reason is that in the second scheme for the evaluation of
P

(1/2)
n2 (Q̃) we have to use the product form in terms of the

roots ρj in (25). Even using the optimized ordering of roots
defined in [15,17], this is numerically less stable than the
recursive evaluation according to (63), (69). If one uses
the first scheme both P

(2)
n2 in (20) and Rn3 in (22)-(23)

can be evaluated recursively. Nevertheless, on our 64-bit
machine both methods worked well and we have chosen
to apply (27) where the determination of the least-squares
optimized polynomials is somewhat simpler.

The global accept-reject step for the gauge field has
been performed in our simulations after full sweeps over
the gauge field links. The order n1 of the first polynomial
P

(1)
n1 has been chosen such that the average acceptance

probability of the noisy correction was near 90%. In prin-
ciple one can decrease n1 and/or increase the acceptance
probability by updating only some subsets of the links be-
fore the accept-reject step. This might be useful on lattices
larger than our largest lattice 123 · 24, but in our case we
could proceed with full gauge sweeps and this seemed to be
advantageous from the point of view of autocorrelations.

2.2 Measurement correction: reweighting

The multi-bosonic algorithms become exact only in the
limit of infinitely high polynomial orders: n → ∞ in (12)
or, in the two-step approximation scheme, n2 → ∞ in
(16). Instead of investigating the dependence on the poly-
nomial order by performing several simulations, it is prac-
tically better to fix some high order for the simulation
and perform another correction in the “measurement” of
expectation values by still finer polynomials. This is done
by reweighting the configurations in the measurement of
different quantities. In case of Nf = 2 flavours this kind of
reweighting has been used in [20] within the polynomial
hybrid Monte Carlo scheme. As remarked above, Nf = 2
is special because the reweighting can be performed by an
iterative inversion. The general case can, however, also be
treated by a further polynomial approximation.

The measurement correction for general Nf has been
introduced in [12]. It is based on a polynomial approxima-
tion P (4)

n4 which satisfies

lim
n4→∞P (1)

n1
(x)P (2)

n2
(x)P (4)

n4
(x) = x−Nf /2 , x ∈ [ε′, λ].(28)

The interval [ε′, λ] can be chosen, for instance, such that
ε′ = 0, λ = λmax, where λmax is an absolute upper bound
of the eigenvalues of Q†Q = Q̃2. In this case the limit
n4 →∞ is exact on an arbitrary gauge configuration. For
the evaluation of P (4)

n4 one can use n4-independent recur-
sive relations (see appendix A), which can be stopped by
observing the convergence of the result. After reweighting
the expectation value of a quantity A is given by

〈A〉 =
〈A exp {η†[1− P (4)

n4 (Q†Q)]η}〉U,η

〈exp {η†[1− P (4)
n4 (Q†Q)]η}〉U,η

, (29)

where η is a simple Gaussian noise like η′ in (21). Here
〈. . .〉U,η denotes an expectation value on the gauge field
sequence, which is obtained in the two-step process de-
scribed in the previous subsection, and on a sequence of
independent η’s. The expectation value with respect to the
η-sequence can be considered as a Monte Carlo updating
process with the trivial action Sη ≡ η†η. The length of
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Fig. 1. The distribution of the correction factors in nine inde-
pendent (parallel) sequences of configurations on 123 ·24 lattice
at β = 2.3, K = 0.1925. The considered configurations are sep-
arated by 50 updating cycles. The upper part shows the distri-
bution and a Gaussian fit. In the lower part the independent
lattices are separated by vertical lines

the η-sequence on a fixed gauge configuration can be, in
principle, arbitrarily chosen. In praxis it has to be op-
timized for obtaining the smallest possible errors. If the
second polynomial gives a good approximation the cor-
rection factors do not practically change the expectation
values. A typical example is shown in Fig. 1. In such cases
the measurement correction is good for the confirmation
of the results.

The application of the measurement correction is most
important for quantities which are sensitive for small eigen-
values of the fermion matrixQ†Q. The polynomial approx-
imations are worst near x = 0 where the function x−Nf /2

diverges. In the exact effective gauge action, including the
fermion determinant, the configuration with small eigen-
values Λ are suppressed by ΛNf /2. The polynomials at
finite order are not able to provide such a strong suppres-
sion, therefore in the updating sequence of the gauge fields
there are more configurations with small eigenvalues than
needed. The exceptional configurations with exceptionally
small eigenvalues have to be suppressed by the reweight-
ing. This can be achieved by choosing ε′ = 0 and a high
enough order n4. It is also possible to take some non-zero
ε′ and determine the eigenvalues below it exactly. Each
eigenvalue Λ < ε′ is taken into account by an additional
reweighting factor ΛNf /2P

(1)
n1 (Λ)P (2)

n2 (Λ). The stochastic
correction in (29) is then restricted to the subspace or-
thogonal to these eigenvectors. Instead of ε′ > 0 one can
also keep ε′ = 0 and project out a fixed number of smallest
eigenvalues. Since the control of the smallest eigenvalues of
the fermion matrix is an essential part of our simulations,
a short summary of the numerical methods to obtain them
is included in appendix B.

Let us note that, in principle, it would be enough to
perform just a single kind of correction. But to omit the
reweighting does not pay because it is much more comfort-
able to investigate the (small) effects of different n4 values
on the expectation values than to perform several simula-
tions with increasing values of n2. Without the updating
correction the whole correction could be done by reweight-
ing in the measurements. However, in practice this would
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Fig. 2. The measurement correction for the a-pion propaga-
tor at zero distance. The exceptional configurations with small
eigenvalues contribute strongly to the raw data. After correc-
tion these contributions are still important but of normal size

not work either. The reason is that a first polynomial with
relatively low order does not sufficiently suppress the ex-
ceptional configurations. As a consequence, the reweight-
ing factors would become too small and would reduce the
effective statistics considerably. In addition, the very small
eigenvalues are changing slowly in the update and this
would imply longer autocorrelations.

A moderate surplus of gauge configurations with small
eigenvalues may, however, be advantageous because it al-
lows for a better sampling of such configurations and en-
hances the tunneling among sectors with different topo-
logical charges. For small fermion masses on large physical
volumes this is expected to be more important than the
prize one has to pay for it by reweighting, provided that
the reweighting has only a moderate effect. The effect of a
better sampling of configurations which small eigenvalues
can be best illustrated by the distribution of quantities
which diverge for zero eigenvalues. An example on 63 · 12
lattice at β = 2.3,K = 0.195 is shown in Fig. 2.

2.3 The Pfaffian and its sign

The Pfaffian resulting from the Grassmannian path in-
tegrals for Majorana fermions (7) is an object similar to
a determinant but less often used [21]. As shown by (8),
Pf(M) is a polynomial of the matrix elements of the 2N -
dimensional antisymmetric matrix M = −MT . Basic re-
lations are

M = PTJP, Pf(M) = det(P ) , (30)

where J is a block-diagonal matrix containing on the di-
agonal 2⊗ 2 blocks equal to ε = iσ2 and otherwise zeros.
From this (9) immediately follows.
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The form of M in (30) can be achieved by a procedure
analogous to the Gram-Schmidt orthogonalization and, by
construction, P is a triangular matrix. In order to see this,
let us introduce the notation

(uMv) ≡
2N∑

α,β=1

uαMαβvβ = (vMTu) (31)

and denote the orthonormal basis vectors by {eα, α =
1, 2, . . . , 2N}. We are looking for a new basis {aj , bk, j, k =
1, 2, . . . , N} obtained by

aj ≡ Pe2j−1 =
∑
α

eα (eαPe2j−1) ,

bk ≡ Pe2k =
∑
α

eα (eαPe2k) (32)

such that the matrix elements on it are given by

(ajMak) = 0 , (bjMbk) = 0 ,
(bkMaj) = −(ajMbk) = δjk . (33)

The construction is started by defining

a1 = e1 , b1 =
e2
M21

. (34)

(If M21 is zero one has to rearrange the ordering of the
original basis to achieve M21 6= 0.) In the next step el, l =
3, 4, . . . , 2N is replaced by

e′
l−2 ≡ el − a1 (b1Mel) + b1 (a1Mel) , (35)

which satisfy

(e′
l−2Ma1) = (e′

l−2Mb1) = 0 . (36)

With this the required form in (33) is achieved for a1 and
b1 and the corresponding matrix elements of P in (32),
which are necessary for a1 and b1, are determined. To pro-
ceed one has to return to (34) with {eα, α = 1, 2, . . . , 2N}
replaced by {e′

α, α = 1, 2, . . . , 2N−2} and obtain the next
(a, b)-pair, until the whole space is exhausted. This gives
a numerical procedure for the computation of P and the
determinant of P gives, according to (30), the Pfaffian
Pf(M). Since P is (lower-) triangular, the calculation of
detP is, of course, trivial.

This procedure can be used for a numerical determi-
nation of the Pfaffian on small lattices [12]. On lattices
larger than, say, 43 · 8 the computation becomes cumber-
some due to the large storage requirements. This is be-
cause one has to store a full Ω ⊗Ω matrix, with Ω being
the number of lattice points multiplied by the number of
spinor-colour indices (equal to 4(N2

c − 1) for the adjoint
representation of SU(Nc)). The difficulty of computation
is similar to a computation of the determinant of Q with
LU -decomposition.

Fortunately, in order to obtain the sign of the Pfaffian
occurring in the measurement reweighting formula (10),
one can proceed without a full calculation of the value of
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Fig. 3. The spectral flow of the hermitean fermion matrix Q̃
for some specific configurations on 63 · 12 lattice at β = 2.3.
The value of K in the simulation is displayed by a vertical line

the Pfaffian. The method is to monitor the sign changes
of Pf(M) as a function of the hopping parameter K. Since
at K = 0 we have Pf(M) = 1, the number of sign changes
between K = 0 and the actual value of K, where the dy-
namical fermion simulation is performed, determines the
sign of Pf(M). The sign changes of Pf(M) can be deter-
mined by the flow of the eigenvalues of Q̃ through zero.
As remarked already in the discussion before (10), the
fermion matrix for the gluino Q̃ has doubly degenerate
real eigenvalues therefore

detM = det Q̃ =
Ω/2∏
i=1

λ̃2
i , (37)

where λ̃i denotes the eigenvalues of Q̃. This implies

|Pf(M)| =
Ω/2∏
i=1

|λ̃i| , =⇒ Pf(M) =
Ω/2∏
i=1

λ̃i . (38)

The first equality trivially follows from (9). The second
one is the consequence of the fact that Pf(M) is a polyno-
mial in K which cannot have discontinuities in any of its
derivatives. Therefore if, as a function of K, an eigenvalue
λ̃i (or any odd number of eigenvalues) changes sign the
sign of Pf(M) has to change, too. We tested the sign of
the Pfaffian in our Monte Carlo simulations by this spec-
tral flow method.

As a representative example, let us consider the Monte
Carlo runs on 63 ·12 lattice for K = 0.19, 0.196, 0.20. The
number of gauge configurations with negative Pfaffian in
some representative subsets of the measured gauge config-
urations is given in Table 1. The flow of the lowest eigen-
values with the hopping parameter Kv is shown in some
examples in Figs. 3, 4. The conclusion is that the prob-
ability of negative Pfaffians at most parameter values is
negligible. Only at the largest hopping parameter, which
corresponds to a negative gluino mass beyond the chiral
phase transition [3], there is a somewhat larger fraction
with negative Pfaffians but their effect on the averages is
still smaller than the statistical errors. Therefore taking
the absolute value of the Pfaffian, as in (1), gives in the
physically interesting points a very good approximation.
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Fig. 4. The spectral flow of the hermitean fermion matrix
Q̃ for some configurations separated by 50 updating cycles on
63 · 12 lattice at β = 2.3; K = 0.2

Table 1. The fraction of Pfaffians with negative sign at β =
2.3 on 63 · 12 lattice for different hopping parameters K

K # configs. # of Pf(M) < 0 fraction

0.19 3840 (60x64) 0 < 0.0003
0.196 5248 (82x64) 14 0.0027
0.2 2304 (36x64) 69 0.03

2.4 Preconditioning

The difficulty of numerical simulations increases with the
condition number λ/ε characterizing the eigenvalue spec-
trum of fermion matrices on typical gauge field configu-
rations. As it is well known, one can decrease the condi-
tion number by preconditioning. Even-odd precondition-
ing in multi-bosonic algorithms have been introduced in
[22]. This turned out to be very useful in our simulations.

For even-odd preconditioning the hermitean fermion
matrix Q̃ is decomposed in subspaces containing the odd,
respectively, even points of the lattice as

Q̃ = γ5Q =

(
γ5 −Kγ5Moe

−Kγ5Meo γ5

)
. (39)

For the fermion determinant we have

det Q̃ = det Q̂ , with Q̂ ≡ γ5 −K2γ5MoeMeo . (40)

The matrix Q̂2 has a smaller condition number than Q̃2.
The condition number and its fluctuations on different

gauge configurations are dominated by the minimal eigen-
value. An example of a comparison of the fluctuations of
the lowest eigenvalue of Q̂2 and Q̃2 is shown in Fig. 5. As
one sees, in this case the mean of the smallest eigenvalue
becomes about a factor 4 larger due to preconditioning.
At the same time the largest eigenvalue becomes smaller,
therefore the average condition number becomes about a
factor 5 smaller.

−6 −5 −4 −3 −2
lg(Λ_min)

0

0.05

0.1

0.15
β=2.3, K=0.196, 6  x12 3 

preconditioned

not
preconditioned

Fig. 5. The distribution of the smallest eigenvalues of the
squared preconditioned fermion matrix Q̂2 versus the non-
preconditioned one Q̃2 on a 63 ·12 lattice at β = 2.3, K = 0.196

Fig. 6. Relative deviation of the successive polynomial ap-
proximations of x−1/4 in the range of eigenvalues correspond-
ing to our simulations in the 123 · 24 lattice at K = 0.1925.
(For parameters see Table 2)

2.5 Parameter choice and autocorrelations

The two-step multi-bosonic algorithm has several algorith-
mic parameters which can be tuned to achieve optimal
performance. In fact, our experience shows that this tun-
ing can bring substantial gain in efficiency.

Polynomial degrees: In order to fix the polynomial de-
grees n1...4, in practice one performs trial runs using in-
creasing values. At the same time, by observing the range
of eigenvalues, one also obtains the interval [ε, λ]. The fi-
nal value of n1 is fixed by ensuring a high acceptance rate,
around 90%, in the update correction step. n2 has to be
large enough to keep the measurement correction small in
important physical quantities. The final precision of the
updating is set by n4, therefore the choice of n1 and n2
does not influence the expectation values. For showing a
typical example, in the upper part of Fig. 6 the polyno-
mial approximation P

(1)
n1 and the product P (1)

n1 P
(2)
n2 are

plotted in the interval [ε, λ]. The product P (1)
n1 P

(2)
n2 P

(4)
n4 is
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Table 2. Parameters of the numerical simulations at β = 2.3. The notations are
explained in the text

lattice: L, T K ε λ n1 n2 n3 n4 updates Nlat

6,12∗ 0.16 0.008 3.2 8 32 32 - 374400 64
6,12∗ 0.17 0.008 3.2 8 32 32 - 332800 64
6,12∗ 0.18 0.008 3.2 8 32 32 - 540800 64
6,12∗ 0.185 0.002 3.4 12 32 48 - 384000 64
6,12 0.185 0.002 3.4 16 100 150 200 550400 64
6,12∗ 0.19 0.0002 3.5 16 60 96 - 712800 64
6,12 0.19 0.0005 3.6 20 112 150 400 1487360 64
6,12∗ 0.1925 0.00003 3.7 22 66 102 400 1280000 64
6,12 0.1925 0.0001 3.7 22 132 180 400 3655680 64
6,12∗ 0.195 0.00003 3.7 22 66 102 400 1224000 64
6,12 0.195 0.00001 3.7 24 200 300 400 460800 64
6,12 0.196 0.00001 3.7 24 200 300 400 952320 64
6,12 0.1975 0.000001 3.8 30 300 400 500 506880 64
6,12 0.2 0.000001 3.9 30 300 400 500 599040 64

8,16 0.19 0.00065 3.55 20 82 112 - 1038400 32
8,16 0.1925 0.0001 3.6 22 142 190 - 870400 32

12,24 0.1925 0.0003 3.7 32 150 220 400 216000 9

displayed in the lower part of the figure. To the left (label
a) the interval covers the range of the fluctuating smallest
eigenvalue, whereas to the right (label b) the function is
shown in the range of fluctuations of the last small eigen-
value which was determined explicitly. (In this case the
correction factors were calculated from the eight small-
est eigenvalues exactly and in the orthogonal subspace
stochastically.)

To fix the degree of the third polynomial, n3, we con-
sider the probability p1 of the system to jump between two
identical configurations. In the limit n3 → ∞ this proba-
bility tends obviously to 1. In practice n3 is increased till
we get p1 ≈ 0.99, which is acceptable from the algorithm
precision point of view, as one is convinced by comparing
the expectation values. The choice of n4 has to be tested,
in principle, by observing its effect on the expectation val-
ues. Usually it is possible to choose already n2 so large that
the measurement corrections with a substantially higher
n4 are negligible compared with the statistical errors.

The parameters of the numerical simulations at β =
2.3 are summarized in Table 2. The runs with an aster-
isk had periodic boundary conditions for the gluino in the
time direction T , the rest antiperiodic. K is the hopping
parameter and [ε, λ] is the interval of approximation for
the first three polynomials of orders n1,2,3, respectively.
The fourth polynomial of order n4 is defined on [0, λ]. In
the last two columns the number of performed updating
cycles, respectively, the number of parallelly updated lat-
tices (Nlat) are given.

Optimal ordering of the roots: The roots of P (1)
n1 have

to be always calculated. As discussed in Sect. 2.1, depend-

ing on the way of doing the global accept-reject in updat-
ing, sometimes the roots of P (2)

n2 are also needed. Concern-
ing this point a non-trivial question is how to order the
roots when the representation (14) is used. Choosing this
order naively leads to overflow and underflow problems be-
cause the product in (14) involves in general very different
orders of magnitude. A good solution [17] is minimizing
the maximal ratio of the values xαPp(x) for x ∈ [ε, λ],
where Pp(x) denotes the partial product under consider-
ation. This is in practice achieved by considering a dis-
crete number of points in the interval {x1, . . . , xN} where
N = O(n). This gives in general sufficient numerical sta-
bility even for orders of many hundreds (see also the tests
performed in [23]).

Autocorrelations: During our simulations autocorrela-
tions of different quantities were determined. Here we re-
port on the analysis for the 123 ·24 lattice at β = 2.3,K =
0.1925. Results for the 63 ·12 and the 83 ·16 lattices can be
found in [3,13]. We considered the short range exponential
autocorrelation τexp of three different quantities, namely

– the a-η′ propagator
– the gluino-glue propagator
– the plaquette

In the last case the data has been sufficient to give also
an estimate of the integrated autocorrelation.

We started the analysis by calculating the autocorre-
lation function C(t) for all these quantities. In case of the
a-η′ we calculated the autocorrelation of the propagator
at time distance ∆t = 1, considering every 150’th config-
uration of the updating series. This was done separately
on each of the lattices run in parallel. By averaging over
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Fig. 7. Autocorrelation function and exponential fit for the
gluino-glue propagator on one of the 123 · 24 lattices run in
parallel at β = 2.3, K = 0.1925

the correlation functions obtained in this way we observed
that the mean correlation function C̄a−η′

(t) was at t =
1 already compatible with zero (C̄a−η′

(1) = 0.028(19)),
which lead to the conclusion that τa−η′

exp ≤ 150 updates.
Estimating the exponential autocorrelation τexp of the

gluino-glue propagator we proceeded similarly as in the
a-η′ case. On all nine lattices that were run in parallel
we determined independently the autocorrelation of the
propagator at time distance ∆t = 1 on every 150’th con-
figuration of our total history. The exponential autocorre-
lation time was then estimated by fitting an exponential
of the form exp(−t/τexp) to the first points of the curve for
each lattice. A typical autocorrelation function with the
exponential fit can be seen in Fig. 7. By finally taking the
average of τexp over all lattices we arrived at the result
displayed in Table 3. It has to be understood that τexp

determined in this way displays a mode between the true
short range exponential and the integrated autocorrela-
tion, since only every 150’th sweep has been considered.

To estimate the integrated autocorrelation time τint

of the plaquette we proceeded in a different manner. On
the basis of prior analysis [3,13] we expect the order of
magnitude of τint to be 102 ∼ 103. Since for each lattice
we have a total of about 24000 configurations in equilib-
rium we expect our time history to have a length of at
most ∼ 100τint. This leads to the conclusion that stan-
dard methods to determine τint [24,25] are not reliable
since they require statistics that are at least of the order
of several hundred τint. Therefore, to estimate the order of
magnitude of τint we proceed as follows. For each lattice
run in parallel we calculated the autocorrelation function
Cplaq(t) of the plaquette for the complete history of 24000
configurations. We fitted an exponential decay to Cplaq(t)
in a small interval (typically [0, 300]) at the beginning
where the fastest decay mode should be dominant. For
longer distance the exponential typically decayed faster
than Cplaq(t). This expected behaviour could usually be

Table 3. Autocorrelation and integrated autocorrelation of
the propagators and the plaquette on 123 ·24 lattice at β = 2.3
and K = 0.1925

τexp τint

a-η′ ≤ 150 -
gluino-glue 620(60) 1100(200)
plaquette 378(37) 675(43)

observed up to a point t̂ where Cplaq(t) started to be dom-
inated by its noise. We then calculated

t̂∑
t=1

Cplaq(t) (41)

and took this value as an estimate of τint. We expect this
procedure only to lead to an order of magnitude estimate
for the integrated autocorrelation. The typical behaviour
for the autocorrelation function of the plaquette together
with the exponential fit can be observed in Fig. 8. In this
example the cutoff t̂ has been chosen at about t̂ ∼ 3500
updates since at this point Cplaq(t) is clearly dominated
by its noise. The final result for τexp and τint have been
obtained by averaging over all nine lattices run in parallel,
and can be found in Table 3.

3 Confinement potential

The potential between static colour sources in gauge field
theory is a physically very interesting quantity because it
is characteristic for the dynamics of the gauge fields. If
the sources are in the fundamental representation of the
gauge group they can be called static quarks.

For a model containing dynamical matter fields in the
fundamental representation, as is the case for QCD with
dynamical quarks, they will screen the static quarks. The
potential then approaches a constant at large distances
[26]. The string tension σ, which is the asymptotic slope
of the potential for large distances, vanishes accordingly.
This type of screening is of a more kinematical nature.

On the other hand, if only matter fields in the ad-
joint representation of the gauge group are present, as in
the case of supersymmetric N=1 Yang-Mills theory, there
are different possibilities. Either the string tension does
not vanish and static quarks are confined, or the static
quarks are screened dynamically by the gauge fields. The
latter situation is found in two-dimensional supersymmet-
ric Yang-Mills theory [27]. The screening mechanism is re-
lated to the chiral anomaly and appears to be specific to
two dimensions.

Four-dimensional SUSY Yang-Mills theory is believed
to confine static quarks [28]. Furthermore, the behaviour
of the string tension as a function of the gluino mass can
give indications on the question, whether QCD and Super-
QCD are smoothly linked [29].

We have determined the static quark potential and the
string tension for N=1 SUSY Yang-Mills theory from our
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Fig. 8. Typical autocorrelation of
the plaquette, with the exponential
fit. The right graph shows the same
data in a smaller interval

Fig. 9. Potential V (R, T ) for R = 3 as a function of T on
a 123 · 24 lattice. The line is an exponential fit to the large T
behaviour, fitted over the range 1 ≤ T ≤ 6

Monte Carlo results. The starting point are expectation
values of rectangular Wilson loops 〈W (R, T )〉. In order
to improve the overlap with the relevant ground state we
have applied APE-smearing [30] to the Wilson loops. The
optimal smearing radius turns out to be near Rs = 3.

From the Wilson loops the potential can be found via

V (R) = lim
T→∞

V (R, T ) , (42)

where

V (R, T ) = log〈W (R, T )〉 − log〈W (R, T + 1)〉 . (43)

The large T limit is approached exponentially [31]. We
have obtained the potential V (R) through a fit of the form

V (R, T ) = V (R) + c1(R)e−c2(R)T . (44)

As an example we show V (3, T ) as a function of T on
a 123 · 24 lattice in Fig. 9. For T > 6 the errors grow
significantly and we have chosen 1 ≤ T ≤ 6 as the best fit
interval on this lattice. On the 83 · 16 lattice fit intervals
from T = 1 to 4 or 5 yield consistent results.

In this way the static potential V (R) has been obtained
for 1 ≤ R ≤ 6 on the 83 · 16 lattice and for 1 ≤ R ≤ 9 on
the 123 · 24 lattice. For larger values of R the errors be-
come rather large and the results are not reliable anymore.
Anyhow, for R > L/2 increasing finite size effects are to

Fig. 10. The static quark potential V (R) on a 83 · 16 lattice
at K = 0.19. The line is a fit with a Coulomb plus a linear
term, fitted over the range 1 ≤ R ≤ 4

Fig. 11. The static quark potential V (R) on a 123 · 24 lattice
at K = 0.1925. The line is a fit with a Coulomb plus a linear
term, fitted over the range 1 ≤ R ≤ 6

be expected. In Figs. 10 and 11 the potential is shown
on the L = 8 lattice at K = 0.19 and L = 12 lattice at
K = 0.1925, respectively.

The string tension σ is finally obtained by fitting the
potential according to

V (R) = V0 − α

R
+ σR. (45)

The value of σ depends on the range of R taken for the fit.
In general it tends to decrease if the largest values of R are
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Table 4. Square root of the string tension σ in lattice units
and Coulomb strength α from fits to V (R) = V0 − α

R
+σR over

different ranges of R

lattice K R fit range a
√

σ α

83 · 16 0.19 1 – 4 0.22(1) 0.23(2)
83 · 16 0.19 1 – 5 0.21(1) 0.25(1)
83 · 16 0.1925 1 – 4 0.21(1) 0.23(2)
83 · 16 0.1925 1 – 5 0.19(1) 0.25(2)

123 · 24 0.1925 1 – 6 0.17(1) 0.25(2)
123 · 24 0.1925 1 – 7 0.16(1) 0.26(2)
123 · 24 0.1925 1 – 8 0.13(2) 0.31(4)

included in the fit. However, this should not be interpreted
as a signal for screening, since the potential is expected to
bend down due to finite size effects. In Table 4 the values
for
√
σ in lattice units are shown for different fit ranges.

We consider the range 1 ≤ R ≤ L/2 as reliable and
quote as final results for the string tension

a
√
σ = 0.22(1) for K = 0.1900, L = 8,

a
√
σ = 0.21(1) for K = 0.1925, L = 8,

a
√
σ = 0.17(1) for K = 0.1925, L = 12. (46)

The string tension in lattice units is decreasing when the
critical line is approached, as it should be. This is mainly
caused by the renormalization of the gauge coupling due
to virtual gluino loop effects which are manifested by de-
creasing lattice spacing a. From a comparison of the L = 8
and L = 12 results one sees that finite size effects still ap-
pear to be sizable. This has to be expected because we
have for the spatial lattice extension L = 12a the result
L
√
σ ' 2.1. In QCD with

√
σ ' 0.45GeV this would

correspond to L ' 1 fm. Although we are dealing with
a different theory where finite size effects as a function
of L
√
σ are different, for a first orientation this estimate

should be good enough.
The coefficient α of the Coulomb term is close to the

universal Lüscher value of π/12 = 0.26 [32].
For the ratio of the scalar glueball mass m(0+), to be

discussed below, and the square root of the string tension
we get

m(0+)/
√
σ = 3.4(7) for K = 0.1900, L = 8,

m(0+)/
√
σ = 3.0(4) for K = 0.1925, L = 8,

m(0+)/
√
σ = 3.1(7) for K = 0.1925, L = 12. (47)

The uncertainties are not very small, but the numbers are
consistent with a constant independent of K in this range.
They are of the same order of magnitude but somewhat
smaller than in pure SU(2) gauge theory [33], where at
β = 2.5 we have m(0+)/

√
σ = 3.6–3.8, depending on the

lattice size.

4 Light bound state masses

The non-vanishing string tension observed in the previous
section is in accordance with the general expectation [1,

4] that the Yang-Mills theory with gluinos is confining.
Therefore the asymptotic states are colour singlets, simi-
larly to hadrons in QCD. The structure of the light hadron
spectrum is closest to the (theoretical) case of QCD with
a single flavour of quarks where the chiral symmetry is
broken by the anomaly.

Since both gluons and gluinos transform according to
the adjoint (here triplet) representation of the colour
group, one can construct colour singlet interpolating fields
from any number of gluons and gluinos if their total num-
ber is at least two. Experience in QCD suggests that the
lightest states can be well represented by interpolating
fields build out of a small number of constituents. Sim-
ple examples are the glueballs known from pure Yang-
Mills theory and gluinoballs corresponding to pseudoscalar
mesons. We shall call the simplest pseudoscalar gluinoball
made out of two gluinos the a-η′ state. Here the label a
reminds us to the fact that the constituents are in the
adjoint representation and η′ stands for the correspond-
ing η′-meson in QCD. Mixed gluino-glueball states can be
composed of any number of gluons and any number of
gluinos, in the simplest case just one of both.

In general, one has to keep in mind that the classi-
fication of states by some interpolating fields has only a
limited validity, because this is a strongly interacting the-
ory where many interpolating fields can have important
projections on the same state. Taking just the simplest
colour singlets can, however, give a good qualitative de-
scription.

In the supersymmetric limit at zero gluino mass mg̃ =
0 the hadronic states should occur in supermultiplets. This
restricts the choice of simple interpolating field combina-
tions and leads to low energy effective actions in terms of
them [4,5]. For non-zero gluino mass the supersymmetry
is softly broken and the hadron masses are supposed to
be analytic functions of mg̃. The linear terms of a Taylor
expansion in mg̃ are often determined by the symmetries
of the low energy effective actions [6].

The effective action of Veneziano and Yankielowicz
[4] describes a chiral supermultiplet consisting of the 0−
gluinoball a-η′, the 0+ gluinoball a-f0, and a spin 1

2 gluino-
glueball. There is, however, no a priori reason to assume
that glueball states are heavier than the members of the
supermultiplet above. Therefore Farrar, Gabadadze and
Schwetz [5] proposed an effective action which includes an
additional chiral supermultiplet. This multiplet consists of
a 0+ glueball, a 0− glueball and another gluino-glueball.
The effective action allows mass mixing between the mem-
bers of the two supermultiplets. The masses of the lightest
bound states and the mixing among them can be investi-
gated by Monte Carlo simulations.

4.1 Glueballs

The glueball states as well as the methods to compute
their masses in numerical Monte Carlo simulations are well
known from pure gauge theory. (For a recent summary of
results and references see [33].)
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Fig. 12. Closed loop, which has been used to build the pseu-
doscalar glueball operator

The lightest state is the JP = 0+ glueball which can
be generated by the symmetric combination of space-like
plaquettes touching a lattice point. In order to optimize
the signal and enhance the weight of the lightest state one
is taking blocked [34] or smeared [30] links instead of the
original ones. In order to obtain the masses, for a first ori-
entation, one can use effective masses m(t1, t2, T ) assum-
ing the dominance of a single state for time-slices t1, t2 on
the periodic lattice with time extension T . One can search
for time distance intervals where the effective masses are
roughly constant and then try single mass fits in these
intervals. In cases with high enough statistics and corre-
sponding small statistical errors two-mass fits in larger
intervals can also be stable and give information on the
mass of the next excited state.

Since no previous results on the glueball mass spec-
trum with dynamical gluinos are available in the litera-
ture, we started our search for dynamical gluino effects
on small lattices as 43 · 8 at hopping parameter values
K ≥ 0.16. We observed some effects for K ≥ 0.18 where
we started runs on larger lattices, up to 123 ·24. As already
seen in the previous section, the lattice spacing a is de-
creasing with increasing K (i.e. decreasing gluino mass).
This means that effectively we are closer to the contin-
uum limit at larger K, resulting in smaller glueball (and
other) masses in lattice units. This effect is strongest at
zero gluino mass where a first order phase transition is ex-
pected due to the discrete chiral symmetry breaking. First
numerical evidence for this phase transition has been re-
ported by our collaboration at K = K0 = 0.1955(5) [3].

With our spectrum calculations we stayed below this
value and stopped at K = 0.1925 where the 123 ·24 lattice
is already not very large. The obtained masses for the 0+

glueball in lattice units are

am(0+) = 0.95(10) for K = 0.1800, L = 6,
am(0+) = 0.85(6) for K = 0.1850, L = 6,
am(0+) = 0.75(6) for K = 0.1900, L = 8,
am(0+) = 0.63(5) for K = 0.1925, L = 8,
am(0+) = 0.53(10) for K = 0.1925, L = 12. (48)

In addition to the JP = 0+ glueball we have studied
the pseudoscalar 0− glueball. In order to create a pseu-
doscalar glueball from the vacuum with an operator built
from closed loops on the lattice, one needs loops which
cannot be rotated into their mirror images. For gauge
group SU(2) the traces of loop variables are real and do
not distinguish the two orientations of loops. The smallest

loops with the desired property are made of eight links.
One possibility would be to take the simplest lattice ver-
sion of Tr(εµνρσF

µνF ρσ). However, it contains two orthog-
onal plaquettes and cannot be put into a single time-slice.
Therefore we have chosen to take the loop C shown in
Fig. 12 [35].

The time-slice operator for the pseudoscalar glueball
is then given by

S(t) =
∑
R

[TrU(C)− TrU(PC)] , (49)

where the sum is over all rotations R in the cubic lattice
group and PC is the mirror image of C. As usual, APE-
smearing has been applied to the links appearing in the
loop.

The pseudoscalar glueball mass has been calculated
from the time-slice correlation functions as an effective
mass from distances 1 and 2 with optimized smearing
radius. On the 63 · 12 lattice a good smearing radius is
obtained for Rs = 4 or 5, and the numbers are very sta-
ble. On the 83 · 16 lattice a clear plateau in the number
of smearing steps could not be seen. Nevertheless, for a
smearing radius between 5 and 8 we obtain rather stable
results. The masses in lattice units are

am(0−) = 1.5(3) for K = 0.1850, L = 6,
am(0−) = 1.45(10) for K = 0.1900, L = 6,
am(0−) = 1.3(1) for K = 0.1925, L = 6,
am(0−) = 1.1(1) for K = 0.1925, L = 8. (50)

The pseudoscalar glueball appears to be roughly twice as
heavy as the scalar one. This is similar to pure SU(2)
gauge theory, where m(0−)/m(0+) = 1.8(2) [33].

4.2 Gluino-glueballs

One can construct colour singlet states from the gluinos
and the field strength tensor in the adjoint representation.
One of these states is a spin 1

2 Majorana fermion which
occurs in the construction of the Veneziano-Yankielowicz
effective action [4]. In order to find the lowest mass in this
channel we consider the correlator consisting of plaquettes
connected by a quark propagator line:

Γg̃g(x, y) = Trspinor (χr
xQ

−1
xr,ysχ

s
y) (51)

where

χr
x =

1
2i

Trcolour (τrŪx) (52)

and the plaquette variable is defined as

Ūx = Upl(x, 12) + Upl(x, 13) + Upl(x, 23) . (53)

For antiperiodic boundary conditions for the gluino in the
time direction the correlator is antiperiodic. By inserting
γ4 into the correlation function (51) it becomes periodic
also with antiperiodic boundary conditions. The resulting
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Table 5. Smearing parameters for Jacobi and APE-smearing
used for measuring the gluino-glueball

lattice K NJacobi KJacobi NAPE εAPE

83 · 16 0.19 20 0.22 8 0.35
83 · 16 0.1925 23 0.185 12 0.34
123 · 24 0.1925 19 0.20 9 0.3

Table 6. Lowest masses for the gluino-glueball at different
hopping parameters and lattices. The value of the gauge cou-
pling has been β = 2.3 throughout

gluino-glueball K = 0.18 K = 0.185 K = 0.19 K = 0.1925

63 · 12 1.93(5) 1.39(8) 1.05(20) -
83 · 16 - - 0.87(13) 0.82(18)
123 · 24 - - - 0.93(8)

projection on the ground state have in both cases either
been compatible with one another, or the propagator mod-
ified with γ4 has shown more mixing with larger masses.
Therefore in extracting the masses we considered only the
above propagator without γ4.

For the gluino-glueball, in order to obtain a satisfac-
tory signal, APE-smearing [30] has been implemented for
the links and Jacobi-smearing [36] for the gluino field.
Tests have shown [13] that Teper-blocking for the links
was in this case not as well suited. Table 5 shows the
smearing parameters used for the gluino-glueball on dif-
ferent lattices at different hopping parameters. They have
been optimized by measuring the masses on a small sample
of data and tuning the parameters accordingly to obtain
the lowest mass values.

The masses for the gluino-glueball were determined
first by considering effective masses m(t1, t2, T ) assum-
ing the dominance of a single state for time-slices t1, t2
on the periodic lattice with time extension T . From this
time distance intervals were determined where the effec-
tive masses were roughly constant and single mass fits in
these intervals were performed. The results are shown in
Table 6.

4.3 Gluinoballs

Besides the gluino-glueball in this work we consider also
gluinoballs defined by a colourless combination of two
gluino fields. The a-η′ has spin-parity 0− and the a-f0
spin-parity 0+. In the simulations for a-η′ and a-f0, respec-
tively, the wave functions Ψ̄γ5Ψ and Ψ̄Ψ were used. These
gluinoballs are contained in the Veneziano-Yankielowicz
super-multiplet [4]. For the correlation function a straight-
forward calculation as in [15] with Γ ∈ {1, γ5} yields

Γg̃g̃(x, y) =
〈
Trsc {ΓQ−1

xx }Trsc {ΓQ−1
yy }

−2 Trsc {ΓQ−1
xy ΓQ

−1
yx }
〉
. (54)

Note the factor of two originating from the Majorana char-
acter of the gluinos. In analogy with a flavour singlet me-

son in QCD the propagator consists of a connected and a
disconnected part: the second, respectively, the first term
of (54).

The numerical evaluation of the time-slice of the con-
nected part can be reduced to the calculation of the prop-
agator from a few initial points. The disconnected part is
calculated using the volume source technique [37]. For the
determination of the gluinoball propagator no smearing
has been used.

In case of the a-f0 particle the disconnected and the
connected parts are of the same order of magnitude. The
former has a much worse signal to noise ratio than the
latter. This leads to a larger error on the a-f0 as compared
to the a-η′ which is dominated by the connected part.

Our results for the a-η′ and the a-f0 masses for dif-
ferent lattices and hopping parameters can be found in
Table 7.

In case of the a-η′ the data has been good enough
to estimate also the next higher state. (These data can
be found in the column denoted by a star.) The lowest
masses have been obtained by using effective masses and
fits as for the gluino-glueball. The fits were rather stable
in case of the a-η′ on the 123 · 24 lattice. This allowed to
extract two masses from the data. Errors were estimated
by the jackknife method.

4.4 Glueball-gluinoball mixing

In the low energy effective action of Farrar, Gabadadze
and Schwetz [5] there is a possible non-zero mixing be-
tween the states in the two light supermultiplets. In par-
ticular there can be mixing of the a-f0 gluinoball and the
0+ glueball.

In order to study the mixing we have calculated the
connected cross-correlation functions

Γij(t) = 〈Si(t0)Sj(t0 + t)〉c (55)

where i, j ∈ {a, b} and Sa(t) is the plaquette operator cre-
ating a 0+ glueball from the vacuum, and Sb(t) is the Ψ̄Ψ
operator creating a a-f0. If there is a non-zero mixing the
hermitean correlation matrix Γij would not be diagonal.
More generally one defines

Λ(t) =

(
Γaa(t) ωΓab(t)
ωΓba(t) ω2Γbb(t)

)
, (56)

where ω is a real valued parameter. Diagonalizing Λ(t)
yields two eigenvalues, which are dominated by the lowest
masses at large times t [38]:

λ0(t) = f0(ω)e−m0t{1 +O(e−(m1−m0)t)} (57)

λ1(t) = f1(ω)e−m1t{1 +O(e−∆m1t)},
∆m1 = min(m1 −m0,m2 −m1). (58)

By tuning ω the statistical errors can be minimized. The
masses m0 and m1 belong to the two lightest physical
states in this channel. The mixing angle θ(t) is defined to
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Table 7. Lowest masses for the a-η′ and the a-f0 at different hopping pa-
rameters and lattices. The gauge coupling is given by β = 2.3 throughout. In
the last column with a star the next higher mass is shown, whenever it could
be determined

a-η′ K = 0.18 K = 0.185 K = 0.19 K = 0.1925 K = 0.1925∗

63 · 12 1.155(11) 0.941(8) 0.594(14) - -
83 · 16 - - 0.725(20) 0.551(17) 1.282(26)

123 · 24 - - - 0.48(5) 1.09(5)

a-f0 K = 0.18 K = 0.185 K = 0.19 K = 0.1925 -

63 · 12 1.49(13) 1.11(17) - -
83 · 16 - - 1.20(22) 0.81(17)

123 · 24 - - - 1.00(13)

Fig. 13. The mixing angle θ(t) in the 0+ channel on a 123 ·24
lattice at K = 0.1925

be the angle between the eigenvector v0(t) corresponding
to λ0 and the vector (1, 0). For large t one should observe
a plateau where the mixing angle is constant and indepen-
dent of ω.

We have determined the mixing angle in the 0+ chan-
nel from our Monte Carlo data. If ω takes its optimal
value ω0 =

√
Γaa/Γbb [36], the errors are smallest. Fig-

ure 13 shows the mixing angle θ(t) for this choice of ω.
On the 83 ·16 lattice for K = 0.19 and K = 0.1925 as well
as on the 123 · 24 lattice for K = 0.1925 the result is con-
sistent with zero within rather small errors. So there is no
mixing between the glueball and the a-f0 state. It might
be possible that mixing only becomes visible in the close
vicinity of the critical line corresponding to zero gluino
mass, where supersymmetry is nearly restored. On the
other hand, the effective action of [5] does not necessarily
require a non-zero mixing to be present.

5 Summary and outlook

The numerical Monte Carlo simulations presented in [3]
and this paper are the first calculations of this kind in a
Yang-Mills theory with light gluinos. Therefore an essen-

tial part of our work had to be invested in algorithmic
studies and parameter tuning.

The two-step multi-bosonic algorithm, after appropri-
ate tuning, turned out to be reliable and showed a satis-
factory performance in the present case which is described
by a flavour number Nf = 1

2 of fermions in the adjoint
representation. We showed that the sign of the Pfaffian
appearing in a path integral formulation of gluinos can be
taken into account, but does not practically influence the
results in the investigated range of parameters. Since the
two-step multi-bosonic algorithm can also be applied for
any number of fermion flavours in the fundamental rep-
resentation, an interesting physical application would be,
for instance, QCD with three light flavours of quarks. On
the basis of our positive experience with the algorithm we
expect that it would also work well in that case.

Concerning parameter tuning in the lattice action, the
problem is to find a region of bare parameter space where
the gluino is light and where the lattice spacing is appro-
priate for feasible numerical simulations. Our strategy was
to start at the lower end of the approximate scaling region
in pure SU(2) lattice gauge theory at β = 2.3 and to in-
crease the hopping parameter K as long as substantial
effects of virtual dynamical gluino loops appear. It is ex-
pected that these effects decrease the lattice spacing due
to the difference of the Callan-Symanzik β-functions with
and without light gluinos. The observed effect is mainly
an overall renormalization of a. The change of dimension-
less ratios of masses and string tension are only moderate
up to K ≤ 0.1925, where most of our simulations were
performed.

Increasing K further is getting more difficult from the
algorithmic point of view because the smallest eigenvalues
of the fermion matrix are becoming really small. In spite
of this our algorithm still performed reasonably well. A
search in the range up to K ≤ 0.20 revealed first evidence
for a first order phase transition expected to occur at zero
gluino mass [3]. Our present estimate for the location of
this phase transition, at β = 2.3, is K0 = 0.1955(5). This
gives for the bare gluino mass in lattice units

am0 ≡ 1
2

[
1
K
− 1
K0

]
(59)
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Fig. 14. The lightest bound state masses in lattice units as
function of the bare gluino mass parameter 1/K. The shaded
area at K = 0.1955(5) is where zero gluino mass and super-
symmetry are expected

a value am0 ' 0.04 at K = 0.1925. With the value of the
string tension in (46) we get m0/

√
σ ' 0.2. Using QCD-

units and neglecting the mass renormalization factor Zm

of the order of 1 this corresponds to a light gluino mass of
about 100MeV . Of course, this can only serve as an order
of magnitude guide because SYM and QCD are after all
two different theories. In order to connect m0 to, say, ΛMS
one had to perform a calculation as in [39] with massless
gluinos.

Having an algorithm and knowing the interesting range
of parameters in the lattice action one can start to per-
form numerical simulations for determining the spectrum
of states and other physically interesting features. The
properties of the lightest states are obviously quite inter-
esting because the construction of low energy effective ac-
tions [4,5] is based on the assumptions about the relevant
composite field variables. An important constraint on the
spectrum is that in the limit of zero gluino mass, where
supersymmetry is expected, the particle states should oc-
cur in supermultiplets with degenerate mass. A collection
of our present results on the lightest states is displayed in
Table 8 and Fig. 14.

As one can see, for the lightest gluino masses (high-
est hopping parameters K) the bound state masses can
be arranged into two groups. The lightest states are the
0− gluinoball (a-η′) and the 0+ glueball. At K = 0.1925
these are in lattice units both near am ' 0.5. The other
group of states is at K = 0.1925 near am ' 1.0 and con-
sists of the 0+ gluinoball, the 0− glueball and the spin-1

2
gluino-glueball. As shown by Fig. 13, there is practically
no mixing between the 0+-states in the two groups. The
disturbing fact concerning supersymmetry is that there is
apparently no spin-1

2 state in the lower mass group. We
saw this problem already at early stages of our project and

hence paid specific attention to a lighter spin-1
2 gluino-

glueball state, but we did not find it.
There are several possible explanations for this. Per-

haps we are not yet close enough to the supersymmetric
limit and therefore the spectrum does not yet look like a
weakly broken supersymmetric spectrum. Another possi-
bility is that we are missing the other spin- 1

2 state because
our choice of interpolating fields is not appropriate. One
can, for instance, think about spin-1

2 gluinoballs made out
of three gluinos which appear at strong coupling [40] and
were not exploited in our simulations. Nevertheless, even
if the spin- 1

2 state completing the lightest supermultiplet
would be dominated by three gluinos, the emerging struc-
ture of the two light supermultiplets would be surprising.
Finally one can think about possible finite volume effects
and the effect of lattice artifacts breaking supersymme-
try at finite lattice spacing. Without further numerical
simulations we cannot exclude this last possibility but we
believe that it is unlikely on basis of the experience in pure
gauge theories. The product of the lattice spacing with the
square-root of the string tension is at K = 0.1925 given
by a
√
σ ' 0.17. In pure SU(2) gauge theory [33] we have

a similar value at β ' 2.5− 2.6 which is within the region
of reasonably good scaling. As discussed in Sect. 3, the
spatial volume extension of our 123 lattice at K = 0.1925
is about 1 fm in QCD units. This is almost certainly not
large enough and therefore there are important finite vol-
ume effects to be expected, but the qualitative features
of the bound state spectrum should already be visible in
such volumes.

We leave this puzzle for further investigations. The
most important outcome of this first Super-Yang-Mills
simulation with light gluinos is that the numerical Monte
Carlo calculations are definitely possible with present-day
techniques and can certainly contribute to the better un-
derstanding of the low energy non-perturbative dynamics
of supersymmetric gauge theories.
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Appendix

A Least-squares optimized polynomials

Least-squares optimization provides a general and flexible
framework for obtaining the necessary optimized polyno-
mials in multi-bosonic fermion algorithms. By exploiting
different weight functions this framework is well suited to
fulfill rather different requirements.

In the first part of this appendix the basic formulae
from [17] are collected. In the second part a simple exam-
ple is considered: in case of an appropriately chosen weight
function the least-squares optimized polynomials for the
approximation of the function x−α are expressed in terms
of Jacobi polynomials.
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Table 8. Masses of the light bound states at β = 2.3 in lattice units

lattice: L, T K am0+

gg am0−
gg am0+

g̃g̃ am0−
g̃g̃ amg̃g

6,12 0.18 0.95(10) - 1.49(13) 1.155(11) 1.93(5)
6,12 0.185 0.85(6) 1.5(3) 1.11(17) 0.941(8) 1.39(8)
8,16 0.19 0.75(6) - 1.20(22) 0.725(20) 0.87(13)
8,16 0.1925 0.63(5) 1.1(1) 0.81(17) 0.551(17) 0.82(18)
12,24 0.1925 0.53(10) - 1.00(13) 0.48(5) 0.93(8)

A.1 Definition and basic relations

The general theory of least-squares optimized polynomial
approximations can be inferred from the literature [41,42].
Here we introduce the basic formulae in the way it has
been done in [17] for the specific needs of multi-bosonic
fermion algorithms. We shall keep the notations there,
apart from a few changes which allow for more generality.

We want to approximate the real function f(x) in the
interval x ∈ [ε, λ] by a polynomial Pn(x) of degree n. The
aim is to minimize the deviation norm

δn ≡
{
N−1

ε,λ

∫ λ

ε

dxw(x)2 [f(x)− Pn(x)]2
} 1

2

. (60)

Here w(x) is an arbitrary real weight function and the
overall normalization factor Nε,λ can be chosen by conve-
nience, for instance, as

Nε,λ ≡
∫ λ

ε

dxw(x)2f(x)2 . (61)

A typical example of functions to be approximated is f(x)
= x−α/P̄ (x) with α > 0 and some polynomial P̄ (x). The
interval is usually such that 0 ≤ ε < λ. For optimizing
the relative deviation one takes a weight function w(x) =
f(x)−1.

It turns out useful to introduce orthogonal polynomials
Φµ(x) (µ = 0, 1, 2, . . .) satisfying∫ λ

ε

dxw(x)2Φµ(x)Φν(x) = δµνqν . (62)

and expand the polynomial Pn(x) in terms of them:

Pn(x) =
n∑

ν=0

dnνΦν(x) . (63)

Besides the normalization factor qν let us also introduce,
for later purposes, the integrals pν and sν by

qν ≡
∫ λ

ε

dxw(x)2Φν(x)2 , pν ≡
∫ λ

ε

dxw(x)2Φν(x)2x ,

sν ≡
∫ λ

ε

dxw(x)2xν . (64)

It can be easily shown that the expansion coefficients
dnν minimizing δn are independent of n and are given by

dnν ≡ dν =
bν
qν

, (65)

where

bν ≡
∫ λ

ε

dxw(x)2f(x)Φν(x) . (66)

The minimal value of δ2n is

δ2n = 1−N−1
ε,λ

n∑
ν=0

dνbν . (67)

The above orthogonal polynomials satisfy three-term
recurrence relations which are very useful for numerical
evaluation. The first two of them with µ = 0, 1 are given
by

Φ0(x) = 1 , Φ1(x) = x− s1
s0

. (68)

The higher order polynomials Φµ(x) for µ = 2, 3, . . . can
be obtained from the recurrence relation

Φµ+1(x) = (x+ βµ)Φµ(x) + γµ−1Φµ−1(x) ,
(µ = 1, 2, . . .) , (69)

where the recurrence coefficients are given by

βµ = −pµ

qµ
, γµ−1 = − qµ

qµ−1
. (70)

Using these relations on can set up a recursive scheme
for the computation of the orthogonal polynomials in
terms of the basic integrals sν defined in (64). Defining
the polynomial coefficients fµν (0 ≤ ν ≤ µ) by

Φµ(x) =
µ∑

ν=0

fµνx
µ−ν (71)

the above recurrence relations imply the normalization
convention

fµ0 = 1 , (µ = 0, 1, 2, . . .) , (72)

and one can easily show that qµ and pµ satisfy

qµ =
µ∑

ν=0

fµνs2µ−ν ,

pµ =
µ∑

ν=0

fµν (s2µ+1−ν + fµ1s2µ−ν) . (73)
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The coefficients themselves can be calculated from f11 =
−s1/s0 and (69) which gives

fµ+1,1 = fµ,1 + βµ ,

fµ+1,2 = fµ,2 + βµfµ,1 + γµ−1 ,

fµ+1,3 = fµ,3 + βµfµ,2 + γµ−1fµ−1,1 ,

. . .

fµ+1,µ = fµ,µ + βµfµ,µ−1 + γµ−1fµ−1,µ−2 ,

fµ+1,µ+1 = βµfµ,µ + γµ−1fµ−1,µ−1 . (74)

The polynomial and recurrence coefficients are recursively
determined by (72)-(74). The expansion coefficients for the
optimized polynomial Pn(x) can be obtained from (65)
and

bµ =
µ∑

ν=0

fµν

∫ λ

ε

dxw(x)2f(x)xµ−ν . (75)

A.2 A simple example: Jacobi polynomials

The approximation interval [ε, λ] can be transformed to
some standard interval, say, [−1, 1] by the linear mapping

ξ =
2x− λ− ε
λ− ε , x =

ξ

2
(λ− ε) +

1
2
(λ+ ε) . (76)

A weight factor (1+ξ)ρ(1−ξ)σ with ρ, σ > −1 corresponds
in the original interval to the weight factor

w(ρ,σ)(x)2 = (x− ε)ρ(λ− x)σ . (77)

Taking, for instance, ρ = 2α, σ = 0 this weight is similar
to the one for relative deviation from the function f(x) =
x−α, which would be just x2α. In fact, for ε = 0 these are
exactly the same and for small ε the difference is negligible.
The advantage of considering the weight factor in (77) is
that the corresponding orthogonal polynomials are simply
related to the Jacobi polynomials [43,44], namely

Φ(ρ,σ)
ν (x) = (λ− ε)νν!

Γ (ρ+ σ + ν + 1)
Γ (ρ+ σ + 2ν + 1)

×P (σ,ρ)
ν

(
2x− λ− ε
λ− ε

)
. (78)

Our normalization convention (72) implies that

q(ρ,σ)
ν = (λ− ε)ρ+σ+2ν+1ν! (79)

×Γ (ρ+ ν + 1)Γ (σ + ν + 1)Γ (ρ+ σ + ν + 1)
Γ (ρ+ σ + 2ν + 1)Γ (ρ+ σ + 2ν + 2)

.

The coefficients of the orthogonal polynomials are now
given by

f (ρ,σ)
µν =

ν∑
ω=0

(−ε)ν−ω(ε− λ)ω

(
µ− ω
ν − ω

)(
µ

ω

)

×Γ (ρ+ µ+ 1)Γ (ρ+ σ + 2µ− ω + 1)
Γ (ρ+ µ− ω + 1)Γ (ρ+ σ + 2µ+ 1)

. (80)

In particular, we have

f
(ρ,σ)
µ0 = 1 , f

(ρ,σ)
11 = −ε− (λ− ε) (ρ+ 1)

(ρ+ σ + 2)
.(81)

The coefficients β, γ in the recurrence relation (69) can be
derived from the known recurrence relations of the Jacobi
polynomials:

β(ρ,σ)
µ = −1

2
(λ+ ε) +

(σ2 − ρ2)(λ− ε)
2(ρ+ σ + 2µ)(ρ+ σ + 2µ+ 2)

,

γ
(ρ,σ)
µ−1 = −(λ− ε)2 (82)

× µ(ρ+ µ)(σ + µ)(ρ+ σ + µ)
(ρ+ σ + 2µ− 1)(ρ+ σ + 2µ)2(ρ+ σ + 2µ+ 1)

.

In order to obtain the expansion coefficients of the
least-squares optimized polynomials one has to perform
the integrals in (75). As an example, let us consider the
function f(x) = x−α when the necessary integrals can be
expressed by hypergeometric functions:∫ λ

ε

dx (x− ε)ρ(λ− x)σxµ−ν−α

= (λ− ε)ρ+σ+1λµ−ν−αΓ (ρ+ 1)Γ (σ + 1)
Γ (ρ+ σ + 2)

×F
(
α− µ+ ν, σ + 1; ρ+ σ + 2; 1− ε

λ

)
. (83)

Let us now consider, for simplicity, only the case ε = 0,
when we obtain

b(ρ,σ)
µ = (−1)µλ1+ρ+σ+µ−α (84)

× Γ (ρ+ σ + µ+ 1)Γ (α+ µ)Γ (ρ− α+ 1)Γ (σ + µ+ 1)
Γ (ρ+ σ + 2µ+ 1)Γ (α)Γ (ρ+ σ − α+ µ+ 2)

.

Combined with (65) and (79) this leads to

d(ρ,σ)
µ = (−1)µλ−µ−α (85)

× Γ (ρ+ σ + 2µ+ 2)Γ (α+ µ)Γ (ρ− α+ 1)
µ!Γ (ρ+ µ+ 1)Γ (α)Γ (ρ+ σ − α+ µ+ 2)

.

These formulae can be used, for instance, for fractional
inversion. For the parameters ρ, σ the natural choice in
this case is ρ = 2α, σ = 0 which corresponds to the
optimization of the relative deviation from the function
f(x) = x−α. As we have seen in Sect. A.1, the opti-
mized polynomials are the truncated expansions of x−α in
terms of the Jacobi polynomials P (2α,0). The Gegenbauer
polynomials proposed in [45] for fractional inversion cor-
respond to a different choice, namely ρ = σ = α− 1

2 . This
is because of the relation

Cα
n (x) =

Γ (n+ 2α)Γ (α+ 1
2 )

Γ (2α)Γ (n+ α+ 1
2 )
P

(α− 1
2 ,α− 1

2 )
n (x) . (86)

Note that for the simple case α = 1 we have here the
Chebyshev polynomials of second kind: C1

n(x) = Un(x).
In our present application we have to consider α = 1

4 .
For the first polynomial P (1)

n1 we could, for instance, use
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Fig. 15. Comparing the polynomial approximations of x−1/4 in the interval [ε, λ] = [0.003, 3.7] at the order n1 = 32. P
(1)
n1 (x) x1/4

is shown for the least squares optimized polynomial minimizing the relative deviation (full line) and for the fractional inversion
defined by the Gegenbauer polynomials with index α = 1

4 (dashed line). The interval is shown in three parts in order to display
better the details

the Gegenbauer polynomials G
1
4 corresponding to

P (− 1
4 ,− 1

4 ). (For P (2,3,4) we need, of course, the polyno-
mials introduced in [15] which approximate more compli-
cated functions.) A numerical comparison shows, however,
that the least squares optimized polynomials minimizing
the relative deviation in the interval [ε, λ] are better than
the Gegenbauer polynomials (see Fig. 15): both approx-
imations are similar at the lower end of the interval but
otherwise the deviations of the former are by a factor of
five smaller.

The special case α = 1
2 is interesting for the numeri-

cal evaluation of the zero mass lattice action proposed by
Neuberger [46]. In this case, in order to obtain the least-
squares optimized relative deviation with weight function
w(x) = x, the function x− 1

2 has to be expanded in the
Jacobi polynomials P (1,0). Note that this is different both
from the Chebyshev and the Legendre expansions applied
in [47]. The former would correspond to take P (− 1

2 ,− 1
2 ),

the latter to P (0,0). The corresponding weight functions
would be [x(λ − x)]−

1
2 and 1, respectively. As a conse-

quence of the divergence of the weight factor at x = 0, the
Chebyshev expansion is not appropriate for an approxi-
mation in an interval with ε = 0. This can be immediately
seen from the divergence of d(− 1

2 ,− 1
2 )

µ at α = 1
2 in (85).

The advantage of the Jacobi polynomials appearing
in these examples is that they are analytically known.
The more general least-squares optimized polynomials de-
fined in the previous subsection can also be numerically
expanded in terms of them. This is sometimes more com-
fortable than the entirely numerical approach.

B Determining the smallest eigenvalues

For finding the smallest eigenvalues and the correspond-
ing eigenvectors of the squared hermitean fermion matrix
Q̃2 = Q†Q we apply the algorithm of Kalkreuter and

Simma [48]. Some modifications and the optimization with
detailed tests have been described in [13]. Here we give a
short summary for the readers convenience.

The smallest eigenvalue of a general hermitean matrix
H can be found by minimizing the Ritz functional

µH(z) ≡ (z∗Hz)
(z∗z)

. (87)

Here the notation defined in (31) is used, with z∗ denoting
the complex conjugate vector of z and (xy) ≡ (xIy) =
(yx), where I is the unit matrix. The gradient of the Ritz
functional is obviously

gH(z) =
Hz(z∗z)− z(z∗Hz)

(z∗z)2
. (88)

For the conjugate gradient procedure we can choose a start-
ing search direction p1 = −gH(z) and the iteration is de-
fined by a new approximation to the eigenvector

zi+1 = zi + αipi , i = 1, 2, . . . . (89)

The factor αi is chosen at the minimum of µH(z) in the
search direction pi. One can show that

αi = {2 (p∗
iHzi)}

/{
(z∗

iHzi)− (p∗
iHpi) (90)

−
√

[(z∗
iHzi)− (p∗

iHpi)]2 + 4 (p∗
iHzi)(z∗

iHpi)]
}
.

Let us note that taking the positive sign in front of the
square root gives the maximum, instead of the minimum.
The other sign can be used for finding the maximal eigen-
value instead of the minimal one. In the iteration relation
(89) the conjugate search direction pi+1 can be chosen
according to [48]

pi+1 = gH(zi+1) + βi

[
pi − zi+1

(z∗
i+1pi)

(z∗
i+1zi+1)

]
. (91)
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For the factor βi one can take, according to the Fletcher-
Reeves prescription, with gi ≡ gH(zi)

βi =
(g∗

i+1gi+1)
(g∗

i gi)
(92)

or alternatively, according to the Polak-Ribiere prescrip-
tion,

βi =
(g∗

i+1gi+1)− (g∗
i gi+1)

(g∗
i gi)

. (93)

It turned out that in case of our fermion matrices the
Polak-Ribiere version is 25% to 40% more efficient than
the Fletcher-Reeves version proposed in [48]. In naive im-
plementations of this iterative procedure numerical prob-
lems may occur due to the increasing length of the vector
zi. Since the Ritz functional is scale invariant, this prob-
lem can be avoided by rescaling, typically every 25 steps,
as

zi → zi√
(z∗

i zi)
, pi → pi

√
(z∗

i zi) ,

gi → gi

√
(z∗

i zi) . (94)

Several smallest eigenvalues might be determined by
applying the above conjugate gradient iteration subse-
quently to the projection into the orthogonal subspaces
defined by

Hk = P⊥
k HP

⊥
k ,

P⊥
k v ≡ v −

k−1∑
i=1

vi (v∗
i v) , (k = 2, 3, . . .) . (95)

Here vi denote the previously found normalized eigenvec-
tors. This naive procedure becomes numerically instable
after a few eigenvalues because of the numerical errors in
the projectors P⊥

k . One can stabilize and speed up this se-
quential search if one embeds it in an iterative scheme [48].
If one is interested in the kmax smallest eigenvalues then,
after finding some approximation to v1, v2, . . . , vkmax

in a
sequential search, the kmax ⊗ kmax matrix

Mij ≡ (v∗
iHvj) (96)

is diagonalized. For reasonable values of kmax this is a
small problem and the resulting new eigenvalues and the
corresponding eigenvectors

v′
i =

kmax∑
j=1

ξ
(i)
j vj (97)

are better than vi. Here ξ(i) denotes the eigenvectors of
the matrix M . After this intermediate diagonalization the
sequential search with conjugate gradient iterations is con-
tinued.

After the restarting of the sequential search it takes
some time until the search directions of the conjugate

gradient iterations become again optimal. Therefore it is
not good to insert an intermediate diagonalization too of-
ten, especially at later stages when the final precision is
approached. In our project a good performance could be
achieved if between the i-th and (i + 1)-th intermediate
diagonalization the sequential search was performed with
(5 + 10i) conjugate gradient iterations. The application
of the projectors P⊥

k becomes, even for moderate values
of k, quite expensive. Since P⊥

k projects out approximate
eigenspaces of H, it is not necessary to apply it at every
conjugate gradient iteration. Tests show that it suffices
to perform the projection only in the intermediate diago-
nalizations and, say, after every 25-th conjugate gradient
iterations.

The optimization of the Kalkreuter-Simma algorithm
pays off very well [13]. It turns out that the number of
necessary conjugate gradient iterations per eigenvalue is
getting smaller and smaller with increasing values of kmax.
Another feature is that the last few of the kmax eigenvalues
are slowly converging. As a consequence, for computing
more than kmax = 16 eigenvalues, it is advantageous to
run the algorithm with k′

max, say, 5% larger than kmax and
stop the iteration if the smallest kmax eigenvalues satisfy
the stopping criterion.

C High performance C++ for LGT
simulations

When starting to develop the software for the DESY-
Münster Collaboration we decided to take care for the
reusability and flexibility of the code1. It is well known
that object oriented design and programming (OOD,
OOP) helps to fulfill these needs [49]. A widely spread
prejudice against OOP is bad performance. But new tech-
niques like expression templates [50–52] or temporary base
class idiom [53] encouraged us to use an object oriented
approach for the software development. There were
serveral reasons, which led to the decision of using C++
in our project. It is the only object oriented (OO) lan-
guage available for high performance computers and it
is a high efficient OO language. Message Passing (MPI)
and multithreading libraries (POSIX threads) are also us-
able with C++. With the help of templates C++ also
supports generic programming [54]. This feature allows
one, for instance, to write a code template for the whole
lattice gauge theory (LGT) simulation without specify-
ing the gauge group. By simply providing a gauge group
class which describes the basic functionality of the de-
sired gauge group (SU(2), SU(3) etc), the compiler is able
to generate code. Generic programming made possible to
port our Super-Yang-Mills simulation program from SU(2)
to SU(3) in less than one week. The only thing we had to
add was a high efficient SU(3) class which consisted of
approximately 800 lines (less than 2% of the project).

By using these techniques the efficiency of the simula-
tion code stands and falls with an efficient vector class. A

1 For more informations see http://pauli.uni-muenster.de/˜
spander/susy/phd.c++.ps
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problem that arises almost always while overloading nu-
merical operators of a vector class is the generation of
temporary objects. This problem is not only limited to
C++ but also to Fortran90. As a simple example let us
consider

a = x + y︸ ︷︷ ︸
t1

+z

︸ ︷︷ ︸
t2=t1+z

. (98)

t1 is generated in a function, which means on the stack. If
the function is left this temporary object has to be copied
away from the stack using the so called copy constructor.
That means the copy constructor is used to generate a
temporary copy from a temporary object. Furthermore
the compiler may generate hidden temporary vectors using
the copy constructor.

A popular method to avoid unnecessary copying is ref-
erence counting [55]. But due to the additional level of
indirection reference counting is efficient only for large
vectors and suited for typical vector length of dynamical
fermion simulations. The basic ideas of two other solutions
which are working fine for both, small and large vectors
are

– Temporary Base Class Idiom
– introduces an own class TmpVector for temporary

vectors,
– TmpVector construct/destructed shallowly,
– operator+(Vector &) returns a TmpVector,
– operator+(TmpVector) is implemented as TmpVec-

tor+=Vector,
– disadvantage: four times more operators have to be

overloaded.
– Expression Templates

– avoids temporary objects in the first place by au-
tomatically transforming
vector u,v,w; u=v+w; at compile time (more or
less) into
for (int i(0); i < u.length(); ++i)
u[i]=v[i] + w[i];

using template meta programming (or compile time
programs).

On one hand it is desirable to implement a class for
handling gamma matrices. On the other hand it is obvious
that the gamma matrix multiplication has to be done at
compile time rather than at run time. Otherwise a fermion
matrix multiplication would proceed at a snail‘s pace. Two
techniques exist to achieve this.

– Lazy Evaluation for γµψ
– delays computation until the result is needed.
– processes expressions like χ+ γµψ in a single task.

– Expression γµγν

– forces the compiler to perform this multiplication
a compile time using template meta programming
[56]

To test the efficiency of different vector classes we used
a Monte-Carlo simulation of the two dimensional σ-model.

Table 9. Runtimes of various vector classes for the simu-
lation of the 2d O(3) symmetric non-linear σ-model on the
T3E-512/600 with the Cray C++ compiler

Fortran77 Blitz++ NumArray.h MV++ math.h++

4.81s 4.93s 5.21s 40.1s 69.1s

Simulations

Algorithms

Fields

Iterators IO System

ObjectFactory

Iterators

Parallel

Iterators

SMP 

Iterators

Native
Parallel IO Native IO

Hardware independent

Hardware dependent

Fig. 16. UML packet structure diagram, showing the hard-
ware dependent and independent parts of the project

This is a worst case test for a vector class because the vec-
tor length is three. The administration overhead caused by
the introduction of a class can be huge compared to the
performed operation. Generally the difference between the
class libraries are small for larger vector sizes. As one can
see in tabular (9) Blitz++ (Expression templates) and Nu-
mArray.h (temporary base class) reach comparable speed
to a hand-optimized Fortran77 implementation on a T3E-
512/600. MV++ uses reference counting which is not suit-
able for small vector sizes. The only commercial library
math.h++ surprisingly is the slowest.

Usually larger object oriented programs break up into
packages which are only loosely connected. Unfortunately
C++ does not support the decomposition in modules as
for example JAVA does. The package structure of the sim-
ulation is shown in diagram 16. The main ingredients are
algorithms which act on fields. They make up 90% of the
code. With the iterator pattern [57] and an abstract I/O
concept the corresponding code is hardware independent.
It is suited for massive parallel, symmetric multiprocessor
and for single CPU architectures. The hardware depen-
dent objects, like iterators or I/O streams, should not be
created by objects of these packages, but by the central
object factory.

Depending on the hardware on which the program is
running, the object factory generates the suitable objects.
The only hardware dependent components are the itera-
tors and the I/O system. The question might arise why
a dedicated I/O system for SMP is missing. The answer
is that it is not needed. Only the algorithms really use
more than one thread. When the algorithm is completed
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all threads are joined to a single one and this one uses
native I/O routines.

References

1. D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and
G. Veneziano, Phys. Rep. 162 (1988) 169.

2. N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19;
ERRATUM ibid. B430 (1994) 485; Nucl. Phys. B431
(1994) 484.

3. R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen and
J. Westphalen, Phys. Letters B446 (1999) 209.

4. G. Veneziano and S. Yankielowicz, Phys. Letters B113
(1982) 231.

5. G.R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev.
D58 (1998) 15009.

6. A. Masiero and G. Veneziano, Nucl. Phys. B249
(1985) 593; N. Evans, S.D.H. Hsu and M. Schwetz,
hep-th/9707260.

7. I. Montvay, Nucl. Phys. Proc. Suppl. B63 (1998) 108.
8. G. Koutsoumbas and I. Montvay, Phys. Letters B398

(1997) 130.
9. A. Donini, M. Guagnelli, P. Hernandez and A. Vladikas,

Nucl. Phys. B523 (1998) 529.
10. I. Montvay, Nucl. Phys. Proc. Suppl. B53 (1997) 853.
11. G. Koutsoumbas, I. Montvay, A. Pap, K. Spanderen,

D. Talkenberger and J. Westphalen, Nucl. Phys. Proc.
Suppl. B63 (1998) 727.

12. R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen and
J. Westphalen, Nucl. Phys. Proc. Suppl. B 73 (1999) 828.

13. K. Spanderen, Monte Carlo simulations of SU(2) Yang-
Mills theory with dynamical gluinos, PhD Thesis, Univer-
sity Münster, August 1998 (in German).

14. G. Curci and G. Veneziano, Nucl. Phys. B292 (1987) 555.
15. I. Montvay, Nucl. Phys. B466 (1996) 259.
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